
Running AI workloads on
IBM Power Systems

Maxime Deloche
Deep Learning Engineer

Jean-Armand Broyelle
Cognitive Systems Lab Technical Leader

Cognitive Systems Lab
IBM Garage Montpellier, France

Plan – Open Cognitive Environment (OpenCE)

• Overview & requirements

• Release cycle

– How to use OpenCE

• How to build

• Conda channels

• Additional repositories

– Containerization

• Advantages

• Build custom development environments

– Useful software

• Horovod, Dask, scikit-optimize…

2

Open Cognitive Environment
(OpenCE) overview

3

Open Cognitive Environment (OpenCE)

– Software distribution for AI & Deep Learning
applications

– Helps building a complete environment for AI
development on Power

– Free and based on open-source SW +
optimizations for IBM Power Systems

This toolkit includes...

– Deep learning frameworks

– NVIDIA software: CUDA toolkit, CuDNN, NCCL,
DALI, TensorRT…

– Data science libraries: numpy, pandas, scikit-
learn, Dask, Horovod, ...

4

OpenCE overview

–https://github.com/open-ce

– Source-to-image project to provide pre-
integrated recipes and build scripts

– Packages built to run in a conda environment

– Previously “IBM Watson Machine Learning
Community Edition” (WMLCE) and before “IBM
PowerAI”

Differences with previous “WMLCE”:

– More flexible “source-to-image” workflow

– Shift from IBM support to community support

• Large clusters with active contributors:
Oak Ridge National Laboratory “Summit”,
MIT “Satori”, Oregon State University…

– Drop support of a few packages and features:
Large Model Support (LMS), RAPIDS, SnapML

5

https://github.com/open-ce

Release cycle

– Current version is 1.1.3

– Uncoordinated upstream releases

– Rule of thumb: a new release should include a
new release of both Tensorflow and Pytorch

– A release is a set of upstream versions that are
guaranteed to work together

– This doesn’t mean that a newer version of an
upstream won’t work!

6= release

Upstream OpenCE

Software requirements

– Operating System

• RHEL 7.6 or higher

• Ubuntu 18.04 or higher

– Python >= 3.6

– NVIDIA GPU Drivers v. 440 (when using GPUs)

– Anaconda installer (https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-ppc64le.sh)

• conda >= 3.8.3 and conda-build >= 3.20.5

7

https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-ppc64le.sh

How to use OpenCE

8

OpenCE packaging

Conda is an open-source package manager for multiple languages, not only Python

– Dependencies automatically resolved

– Delivery of packages is continuous

– Conda environments isolate software stacks

Documentation: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/index.html

Anaconda installer: https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-ppc64le.sh

9

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/index.html
https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-ppc64le.sh

You need a conda channel. 2 options:

Easy way

- Use an already built, publicly accessible Conda
channel of OpenCE: https://opence.mit.edu/

- Built for the IBM Power9 “Satori” cluster at MIT

- Ready to use as conda channel (see Conda
section below)

- Useful tips and guides in their documentation:
https://mit-satori.github.io/

- Alternative (Oregon State University channel):
https://ftp.osuosl.org/pub/open-ce/current/

Alternative

- Build a conda channel of OpenCE

- Cons: you must handle the build and the access
to the channel

- Pros: you are autonomous on what packages to
build and how often it is updated

10

https://opence.mit.edu/
https://mit-satori.github.io/
https://ftp.osuosl.org/pub/open-ce/current/

11

Requirements,
build scripts and
main README Environment YAML files: lists

of compatible software that
make a release

Feedstocks: separate repos
for components

12

How to build OpenCE (1/2)

– Install requirements (including CUDA if GPUs)

– Git clone the “open-ce” repo

– Pick the environment you want to build from the “open-ce-environments” repo

– Run the “open-ce build env…” command

– Full “OpenCE” build requires 10 to 15 hours ; and a lot less for smaller YAML envs.

$ git clone https://github.com/open-ce/open-ce.git

$./open-ce/open_ce/open-ce build env \

https://raw.githubusercontent.com/open-ce/\

open-ce-environments/main/envs/opence-env.yaml

13

How to build OpenCE (2/2)

– Previous build produces a “./condabuild” dir

– You can possibly move that directory to a web
server and make it available to your users (the
same way the MIT OpenCE conda channel works)

– Possibility to build single feedstocks

– Possibility to run tests after a build (defined for
each package in their feedstock repo)

– Possibility to build inside a container
(clean environment for the build and makes
builds more “system independent”)

14

$ open-ce build feedstock ...

$ open-ce test env ...

$ open-ce build env \
--container_build ...

$ conda install -c ./condabuild \

numpy tensorflow ...

Configuration and use

– Add OpenCE to the conda channels (or modify directly “~/.condarc” file):

– List installed packages

– Search a package

– Install a package (optionally specifying version)

– Uninstall a package

15

$ conda config --prepend channels http://opence.mit.edu/

$ conda list

$ conda search numpy

$ conda install numpy=1.17.4

$ conda remove numpy

or replace with your
own Conda channel

GPUs and CUDA

– GPU drivers (v. 440 or higher) need to be installed (https://www.nvidia.com/Download/index.aspx)

– CUDA runtime package is available in the Anaconda default channel: “cudatoolkit” (version 10.2 or 11.0)

• Package link: https://anaconda.org/anaconda/cudatoolkit

– It includes everything needed by GPU-accelerated apps:

• GPU-accelerated libraries, CUDA runtime, compiler, profiling tools…

16

https://www.nvidia.com/Download/index.aspx
https://anaconda.org/anaconda/cudatoolkit

Manage Conda environments

– Conda environments allow to have multiple
software stacks:

• Multiple Python versions

• Different frameworks or versions

Active environment is displayed at the beginning
of your prompt.

Easy to create, install and switch between
software stacks!

– List environments

– Create an environment

– Switch between environments

$ conda env list

$ conda create -n my_env python=3.7

$ conda activate my_env

17

18

Additional repositories

– Supplementary channel (useful packages that are not part of OpenCE):

• https://anaconda.org/powerai

– “old” WMLCE main channel:

• https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/

– “old” WMLCE early-access channel:

• https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda-early-access/

19

https://anaconda.org/powerai
https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/
https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda-early-access/

If your package is still not
available?

– Try pip:

• Install pip with conda, and search for your package

• If pip finds the package:

– If there is a binary built for ppc64le, it will install it and dependencies

– If not, it will try to install it using its “setup.py” file (see setuptools)

– If pip compilation fails, try to recompile the package manually

20

Warning This conflicts if the same package is installed in Conda: only use it when you can’t find it in
the various Conda repositories!

Hint Build a wheel file (self-contained pip package) that you can then save and re-use on any
ppc64le system (and possibly add it to your built Conda channel).

Air-gapped systems

– Local channel needed, not only with packages
from OpenCE but also standard packages from
main repos

– Solution: think ahead about your stack and create
a “custom” conda channel

1. On an internet-facing system, clean the cache

2. Build an environment will all packages you
need ; and locate the cache

3. Copy all “.tar.bz2” and “.conda” files from the
cache to “MY_CHANNEL/noarch/” on the
air-gapped system

4. Install Anaconda or your air-gapped system
and build a local conda channel from it (this
creates metadata files needed by conda)

5. Install using that directory, or add it to your
conda configured channels

21

$ conda clean --all

$ conda create -n my_env PACKAGES

$ conda info | grep “package cache”

$ conda index MY_CHANNEL/

$ conda install –c ./MY_CHANNEL/ \
PACKAGES

$ conda config --prepend channels \
file://path/to/MY_CHANNEL/

Containerization

22

Container images

– Advantages of working in containers:

• Isolation of users on your system

• Resources limits (GPUs in particular)

• Custom software stack for each container

– Can run on a container orchestrator
(Kubernetes/Red Hat Openshift) or standalone
using Docker commands

– No (known) OpenCE available images yet

– Previous “WMLCE” IBM images:
https://hub.docker.com/r/ibmcom/powerai

– The image we built for our customers (that you
can freely modify and reuse):
https://gitlab.com/PSLC/wmlce-mop

23

https://hub.docker.com/r/ibmcom/powerai
https://gitlab.com/PSLC/wmlce-mop

Your own minimal image

24

FROM ubuntu:20.04

ENV PATH /opt/conda/bin:$PATH

RUN apt-get update -y && apt-get install -y wget

RUN wget --quiet \
https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-ppc64le.sh && \
sh ./Anaconda3-2020.11-Linux-ppc64le.sh -b -p /opt/conda && \
conda config --prepend https://opence.mit.edu/ && \
conda create -n opence python=3.8 tensorflow pytorch

Add additional libs, conda environments, GUI, SSH service...

CMD ["bash", "-i"]

JupyterLab (1/2)

25

JupyterLab (2/2)

26

RUN conda run -n opence conda install -y nodejs jupyterlab

CMD [“/opt/anaconda/envs/opence/bin/jupyter”, \
“lab”, \
“--ip=$(hostname)”, \
“--no-browser”, \
“--notebook-dir=/home/user/”]

Source: https://github.com/jupyterlab/jupyterlab

Doc: https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

https://github.com/jupyterlab/jupyterlab
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Theia (1/2)

27

Theia (2/2)

28

COPY theia-package.json /tmp/theia-install/package.json

RUN cd /tmp/theia-install && \
conda create -y -n theia python=2 nodejs && \
conda run -n theia npm install -g yarn && \
conda run -n theia yarn && \
conda run -n theia yarn theia build

CMD [“conda”, “run”, “-n”, “theia”, \
“yarn”, “theia”, “start”, “--hostname“, “127.0.0.1”]

Doc: https://theia-ide.org/docs/

https://theia-ide.org/docs/

Containerization - Final thoughts (1/2)

– Those are 2 examples among many web-based IDEs. You can take advantage of them even when not
running in containers.

– Containers allow to keep the host environment clean and stable, and still let the cluster users customize
their work environment and tailor them to their development needs.

– When building containers, you can use CI/CD pipelines (Github Actions, Gitlab CI/CD, …) to simplify the
development workflow: by automating the build, test and push to a registry steps.

29

Containerization - Final thoughts (2/2)

– JupyterHub (https://github.com/jupyterhub/jupyterhub) is multi-user hub of Jupyter Notebooks

• Spawns and manages multiple instances of single-user environments

• You can bring in your own Docker image!
(see https://jupyterhub-dockerspawner.readthedocs.io/en/latest/)

30

instantiate connect to
End users

https://github.com/jupyterhub/jupyterhub
https://jupyterhub-dockerspawner.readthedocs.io/en/latest/

Useful software

31

Horovod (1/3)

– Distributed deep learning training framework

– Interfaces with Tensorflow, Keras, Pytorch and MXNet

– Based for underlying communications on:

• Use MPI (Message Passing Interface) to communicate on the control plane

• Use Nvidia NCCL to communicate on the data plane (MPI-compatible library with
operations optimized for GPUs, especially “allreduce”)

– Latest version 0.21.0 included in OpenCE, as well as NCCL and OpenMPI

32

Horovod (2/3)

33

initialize Horovod
horovod.init()

pin GPU to be used to process local rank (one GPU per process)
config.gpu_options.visible_device_list = str(horovod.local_rank())

define dataset and model
train_dataset = ...
model = Sequential().add(...)

create a distributed optimizer
opt = horovod.DistributedOptimizer(keras.optimizers.Adam())

compile the Keras model
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt, metrics=['accuracy’])

train the model
Callback broadcasts initial variable states from rank 0 to all other processes.
This is necessary to ensure consistent initialization of all workers.
model.fit(train_dataset, callbacks=[horovod.callbacks.BroadcastGlobalVariablesCallback(0)])

Keras sample code

Horovod (3/3)

– Run on single host with 4 GPUs:

– Run on 3 hosts with 4 GPUs each:

– Benchmarks shows a scaling of
~90% on 128 4-GPU servers

34

$ horovodrun -np 4 -H localhost:4 python train.py

$ horovodrun -np 12 -H server1:4,server2:4,server3:4 python train.py

Horovod defines a “horovodrun” command
that is a wrapper to “mpirun” calls.

Dask (1/2)

– Parallel computing library for Python – scale from a
laptop to a cluster with the same familiar API

– 2 components:

• Distributed task scheduler

• Dask Collections optimized for distributed
environments and larger-than-memory data

– Great doc: https://docs.dask.org/en/latest/

35

https://docs.dask.org/en/latest/

Dask (2/2)

– Familiar programming interfaces: – Lazy evaluation: build a graph of operations that
is triggered by calling “compute()”

– Dask-ML extends scikit-learn with the same API

• Can also be used with Pytorch, Keras, and
Tensorflow using packages that bring a Scikit-
learn like API to these frameworks (Skorch,
SciKeras…)

– See https://ml.dask.org/index.html

36

import dask.dataframe as dd # pandas-like

df = dd.read_csv(“*.csv”)
df.groupby(df.user_id).value.mean().compute()

import dask.array as da # numpy-like
f = h5py.File(“myfile.hdf5”)
x = da.from_array(f['/big-data’],

chunks=(1000, 1000))
x - x.mean(axis=1).compute()

https://ml.dask.org/index.html

Scikit-optimize (1/3)

– Hyper-parameter optimization library

– Based on scikit-learn but not limited to it, it can
optimize any function with parameters

– Embeds Bayesian Optimization algorithm

• Black box function (no gradients)

• Expensive to evaluate

• Observations are noisy

– Typically a neural network training

– To be installed with ‘pip’
37

import skopt
import matplotlib.pyplot as plt
import numpy as np

DIMENSIONS = [
skopt.space.Real(0.0, 1.0, name="x")

]

def f(x, noise_level=0.1):
return np.sin(x[0]*5) * \

(1-np.tanh(x[0]**2)) \
+ np.random.randn() * noise_level

opt = skopt.Optimizer(DIMENSIONS)

for i in range(20):
x = opt.ask()
y = f(x)
result = opt.tell(x, y)

print(result)

Scikit-optimize (2/3)

38

Scikit-optimize (3/3)

39

Thank you!
Questions?

40

41

