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Growth in on-line data

400 million active websites

500 hours of YouTube video
uploaded every minute

500,000 movies

100 terabytes of satellite images
every day
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How can neural networks learn the rich
internal representations required

for difficult tasks such as recognizing
objects or understanding language?

BY YOSHUA BENGIO, YANN LECUN, AND GEOFFREY HINTON

Deep
Learning
for Al

TURING LECTURE

Yoshua Bengio, ¥ann LeCun, and Geoffrey Hinton are recipients
of the 2018 ACM AM. Turing Award for breakthroughs that have
made deep neural networks a critical component of computing.

RESEARCH ON ARTIFICIAL neural networks was
motivated by the observation that human intelli
emerges from highly parallel networks of relatively
simple, non-linear neurons that learn by adjusting
the strengths of their connections. This observation
leads to a cen computational question: How is it
possible for networks of this general kind to learn
the complicated internal representations that are
required for difficult tasks such as recognizing

gence
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objects or understanding language?
Deep leaming seeks to answer this
question by using many layers of activ-
ity vectors as representations and
learning the connection strengths that
give rise to these vectors by following
the stochastic gradient of an objective
function that measures how well the
network is performing. It is very sur-
prising that such a conceptually simple
approach has proved to be so effective
when applied to large training sets us
ing huge amounts of computation and
it appears that a key ingredient is
depth: shallow networks simply do not
work as well.

We reviewed the basic concepts
and some of the breakthrough
achievements of deep learning several
years ago.*’ Here we briefly describe
the 0]’ig’|l‘li of deep lr_';jrning', describe
a few of the more recent advances, and
discuss some of the future challenges.
These challenges include learning with
little or no external supervizion, coping
with test examples that come from a
different distribution than the training
examples, and using the deep leaming
approach for tasks that humans solve
by using a deliberate sequence of steps
which we attend to consciously—tasks
that Kahneman®® calls system 2 tasks as
opposed to system I tasks like object
recognition or immediate natural lan-
guage understanding, which generally
feel effortless.

From Hand-Coded Symbolic
Expressions to Learned Distributed
Representations

There are two quite differemt para-
digms for Al. Put simply, the logic-in
spired paradigm views sequential rea-
soning as the essence of intelligence
and aims to implement reasoning in
computers using hand-designed rules
of inference that operate on hand-de-
signed symbolic expressions thart for
malize knowledge. The brain-inspired
paradigm views learning representa
tions from data as the eszence of in-
telligence and aims to implement
learning by hand-designing or evolv-
ing rules for modifying the connee-

tion strengths in simulated networks
ofartificial neurons.

In the logic-inspired paradigm, a
symbol has no meaningful internal
structure: Its meaning resides in its
relationships to other symbaols which
can be represented by a set of sym-
bolic expressions or by a relational
graph. By contrast, in the brain-in
spired paradigm the external sym
bols that are used for communica-
tion are converted iInto internal
vectors of neural activity and these
vectors have a rich similarity strue-
ture. Activity vectors can be used to

maodel the structure inherent in a set
of symbaol strings by learning appro-
priate activity vectors for each symbal
and leamning non-linear transforma-
tions that allow the activity vectors
that correspond to missing elements
of a symbol string to be filled in. This
was first demonstrated in Rumelhart
et al.” on tov data and then by Bengio
et al.* on real sentences. A very im
pressive  recent  demonstration s
BERT,® which also exploits self-at-
tention to  dynamically connect
groups of units, as described later.
The main advantage of using vec

tors of newral activity to represent
concepts and weight matrices to cap-
ture relationships between concepts
iz that this leads to automatic gener
alization. If Tuesday and Thursday
are represented by very similar vec-
tors, they will have very similar causal
effects on other vectors of neural ac
tivity. This facilitates analogical rea-
soning and suggests that immediate,
intuitive analogical reasoning is our
primary mode of reasoning, with logi
cal sequential reasoning being a
much later development,* which we
will discuss.
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Innovation in machine learning models
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Growth in compute-power

Google TPU v3
420 teraflops

4096 x TPU v4 = 1 exaflop
(108 floating pointing operations per second)
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Medical diagnosis

Digital OCT scan

b

877 manually segmented
training images

14,884 training tissue maps with confirmed
diagnosis and referral decision

Tissue-segmentation map

b 4

Classification network

Full mac. hole

>

e Referral suggestion (%)

Urgent 98.9
Semi-urgent 05
Routine 0.4
Observation only 0.2

Diagnosis probability (%)

Normal 71
CNV 99.0

MRO 54
Full mac. hole 11.0
Part. mac. hole 24.2
CSR 15.0
VMT 43.4

Geo. atrophy 51.9

Tissue volumes (mm®)
Drusen &= : 0.050
ERM 3 0.000

Diagnosis probabilities
and referral suggestion

De Faux et al., Clinically applicable deep learning for diagnosis
and referral in retinal disease, Nature Medicine, volume 24, 2018



Stochastic processes: sequence models

p(anxl' X2y ey Xn—l)
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Text generation from language models — GPT-3

Title: Star’s Tux Promise Draws Megyn Kelly’'s Sarcasm

Subtitle: Joaquin Phoenix pledged to not change for each awards event

Article: A year ago, Joaquin Phoenix made headlines when he appeared on the red carpet at the
Golden Globes wearing a tuxedo with a paper bag over his head that read, "l am a shape-shifter. |
can't change the world. | can only change myself." It was a promise to not change to fit into the
Hollywood mold: "l think that's a really special thing, to not change yourself. | think it's a really
special thing to say, This is what's inside of me, I'm proud of it, and I'm not going to be ashamed
because of the way that someone else thinks | should be.™ Now, it's the Oscars, and Phoenix is at it
again. But this time, his publicist is saying he'll be wearing a tux no matter what. Megyn Kelly was
not impressed, and she let him have it on The Tonight Show. "You know, | feel like, | feel like you
could have worn the tux," she says. "But you're saying you're a shape-shifter. | don't know if you can
change your tux, but you can change your mind. You can change your mind. You can change your
mind." Phoenix says he did, but it didn't stick. "l was like, "Okay, I'm going to wear a tuxedo to this
thing.' And then | thought, "I don't want to wear a tuxedo to this thing." Kelly goes on to encourage
him to change his mind again, but Phoenix says it's too late: "I'm committed to wearing this."

Brown, T. et al. Language models are few-shot learners, NeurlPS, 2020
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Few-shot learning with GPT-3

Translate English to French,
would you like breakfast => voulez-vous un petit-dejeuner
it is raining => il pleut
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GATO

A transformer network trained with several kinds of data on multiple tasks.

Trained on several datasets/tasks:

« Text (similar to GPT-3)

* Vision+language (e.g. images and captions)
« Simulated control tasks (e.g. Atari games)

* Robotic block stacking

Reed et al., A Generalist Agent, May 2022, arXiv:2205.06175



Precipitation nowcasting
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= MetOffice  \/griational Autoencoder with latent variable
Denton and Fergus, ICML 2018
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Claire Bartholomew, John Marsham, Teil Howard, Leif Denby
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Matplotlib




Animal tracking for Biological Sciences
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Emergent representation
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Protein 3D structure prediction from amino acid sequence

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589 (2021)



Learning to play
games through
self-play

* D. Silver, et al., Mastering the
game of Go without human
knowledge, Nature vol. 550, 2017.
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Evaluation of board positions
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Rectifier nonlinearity
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Batch normalisation

T

3x3, Conv, 256

A

Rectifier nonlinearity

?

Batch normalisation

?

3x3, Conv, 256

A

Residual block

prediction of game outcome € [—1,1]

!

| tanh |
move probabilities t

T | fcl(256,1) |

| logistic | | Rectifier nonlinearity |
| fcl(*,362) | | fcl(*,256) |
| Rectifier nonlinearity | | Rectifier nonlinearity |
| Batch normalisation | | Batch normalisation |
| 1x1, Conv, 2 | | 1x1, Conv, 1 |

A

Residual block

Residual block

Residual block

\ Rectifier nonlinearity \

| Batch normalisation |

| 3x3,Conv, 256 |

T

19 or 39
residual
blocks

history of last 8 board positions (19 X 19 x 17)



Generative Networks

Latent z € Z Noise
Synthesis network g

[Const 4x4x512]

Tero Karras, Samuli Laine, Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks, CVPR 2019. o



Video synthesis from audio

Facial appearance
(identity)

)
)

Audio clip

Mohammed Alghamdi, Andy Bulpitt
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Engineering Design

® Plane
Task: finding similar parts o cpos

Bezier Surface

Latent vector space where Graph neural
similar parts are close-by network
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. u; + uu, — (0.01/m)u,,, =0
Solving PDEs
x € [—-1,1], t €10,1]
u(0,x) = —sin(mx)

u(t,—1) =u(t,1) =0

u(t, z)
1.0 o
0.5
= 0.0
—0.5
~1.0 —— %
0.0 0.2 0.4 0.6 0.8

t

0.75
0.50
0.25
0.00
—0.25
—0.50
—0.75

Example with Burger’s equation from: Maziar Raissi et al., Physics Informed Deep Learning (Part 1): Data-driven
Solutions of Nonlinear Partial Differential Equations, arXiv:1711.10561, 2017. *
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