Transport Elliptical Slice Sampling arXiv: 2210.10644

Alberto Cabezas González

Department of Mathematics and Statistics Lancaster University

October 29, 2022

Objectives

Sample from an unnormalized posterior distribution

$$\pi(x) \propto L(y|x)\pi_0(x).$$

- Use local pointwise information of the target distribution to generate a Markov chain of dependent samples.
- **MCMC** with transition kernel q(x'|x) such that,

$$Q\pi := \int q(x'|x)\pi(x)dx = \pi(x').$$
 (1)

Efficient: we estimate $\mu = \int f(x)\pi(x)dx$ with $\hat{\mu} = n^{-1}\sum_{i=1}^{n} f(x'_i)$, then by CLT

$$\hat{\mu} \approx N(\mu, n^{-1}\sigma) \tag{2}$$

where $\sigma = Var(f(x'_i)) + 2\sum_k Cov(f(x'_i), f(x'_{i+k}))$ if stationary.

Objectives

Sample from an unnormalized posterior distribution

 $\pi(x) \propto L(y|x)\pi_0(x).$

- Efficient MCMC algorithms usually rely on using gradient information from the target distribution, i.e. discretized Hamiltonian or Langevin dynamics of a process stationary on our target distribution.
- Optimizing these algorithms to efficiently minimize both computations and correlations between sequential samples requires algorithmic parameters to be manually tuned.
- Accelerate sampling on modern computer architectures, e.g. utilizing GPUs or TPUs.
- Many, short chains (run in parallel) instead of few, long chains.
- Lockstep necessity when simulating parallel chains on modern vector oriented libraries (PyTorch, TensorFlow, JAX).

Elliptical Slice sampler

- Gradient-free MCMC with no tuning parameters [Murray et al., 2010].
- **Require:** $x, L(\mathcal{D}|\cdot)$ 1: $V \sim \mathcal{N}(0, \mathbb{I}_d)$ 2: $w \sim \text{Uniform}(0, 1)$ 3: $\log s \leftarrow \log L(\mathcal{D}|x) + \log w$ 4: $\theta \sim \text{Uniform}(0, 2\pi)$ 5: $[\theta_{min}, \theta_{max}] \leftarrow [\theta - 2\pi, \theta]$ 6: $x' \leftarrow x \cos \theta + v \sin \theta$ 7: if $\log L(\mathcal{D}|x') > \log s$ then Return x' 8: 9. else if $\theta < 0$ then 10. $\theta_{min} \leftarrow \theta$ 11: else 12. $\theta_{max} \leftarrow \theta$ 13: end if 14: $\theta \sim \text{Uniform}(\theta_{\min}, \theta_{\max})$ 15
- 16: Go to 6.
- 17: end if

Assume our target $\pi(x) \propto L(y|x)\mathcal{N}(x|0, \mathcal{C}).$

Figure: Elliptical Slice sampler

Normalizing flows

Theorem

Let $\mathcal{U} \subset \mathbb{R}^d$ be open and $T_{\psi} : \mathcal{U} \to \mathbb{R}^d$ be continuous, bijective and differentiable at every point in \mathcal{U} , then for every measurable $f : \mathbb{R}^d \to [0, \infty]$ and letting $\mathcal{X} = T_{\psi}(\mathcal{U})$

$$\int_{\mathcal{X}} f(x) dx = \int_{\mathcal{U}} f(T_{\psi}(u)) |\det \nabla T_{\psi}(u)| du,$$
(3)

where ∇T is the Jacobian matrix of T.

Choose a normalized and simple to sample from *reference density* $\phi(u)$.

$$\pi(x) = \phi(T_{\psi}^{-1}(x)) |\det \nabla T_{\psi}^{-1}(x)| =: \hat{\phi}(x)$$
(4)

$$\phi(u) = \pi(T_{\psi}(u)) |\det \nabla T_{\psi}(u)| =: \hat{\pi}(u), \tag{5}$$

In practice we'll parametrize and optimize a T_{ψ} such that $\hat{\phi}(x) \approx \pi(x)$ and $\hat{\pi}(u) \approx \phi(u)$.

Normalizing flows

Figure: Sampling from the Banana density $\pi(x_1, x_2) \propto \exp\left(-[x_1^2/8 + (x_2 - x_1^2/4)^2]/2\right)$ using the transport

map $T(u_1, u_2) = (\sqrt{8}u_1, u_2 + 2u_1^2)$ starts by transforming the target space to the reference space via a change of variables, drawing samples from an ellipsis on the extended reference space (not pictured) and pushing samples back to the target space.

Normalizing flows (parametrization)

- Wide class of linear and nonlinear functions which can be used [Kobyzev et al., 2020].
- Coupling architecture introduced by Dinh et al. [2014] with affine bijection.
- Consider the disjoint partition $x = (x^A, x^B) \in \mathbb{R}^p \times \mathbb{R}^{d-p}$. Then, one can define a transformation $G : \mathbb{R}^d \to \mathbb{R}^d$ by the formula

$$\boldsymbol{x}^{\boldsymbol{A}} = \boldsymbol{e}^{\psi_1} \odot \boldsymbol{u}^{\boldsymbol{A}} + \psi_2 \tag{6}$$

$$x^{B} = u^{B}, \tag{7}$$

given parameters $\Psi : \mathbb{R}^{d-p} \to \mathbb{R}^{p} \times \mathbb{R}^{p}$ learned only from the extended input, with Ψ a dense feedforward neural network.

- Easily inverted through a shift and scale with parameters $\Psi(x^B) = \Psi(u^B)$.
- The modulus determinant of its Jacobian matrix can be easily computed as $|\det \nabla G(x)| = \prod_{i=1}^{d} (e^{\psi_1})_i$ and $|\det \nabla G^{-1}(x)| = \prod_{i=1}^{d} (e^{-\psi_1})_i$.
- Arbitrary complexity by introducing a transformation $D : \mathbb{R}^d \to \mathbb{R}^d$ with the same structure as *G* but with the roles of the partitions reversed.

$$T_{\psi} = D_n \circ G_n \circ \cdots \circ D_1 \circ G_1, \qquad n \ge 1$$
(8)

Normalizing flows (optimization)

- Minimize a divergence between our target density $\pi(x)$ and the *push-forward* reference density $\hat{\phi}(x)$.
- Kullback-Leibler divergence [KL; Kullback and Leibler, 1951] is arguably the most widely used and studied divergence.

$$\mathsf{KL}(\pi || \hat{\phi}) = \int \log \frac{\pi(x)}{\hat{\phi}(x)} \pi(x) dx.$$
(9)

- By LOTUS $KL(\pi || \hat{\phi}) = KL(\hat{\pi} || \phi).$
- KL divergence is asymmetric, i.e. $KL(\pi || \hat{\phi}) \neq KL(\hat{\phi} || \pi)$.
- Approximate inference minimizes (underestimating the real variance)

$$\mathsf{KL}(\phi(u)||\hat{\pi}(u)) \approx \frac{1}{M} \sum_{i=1}^{M} \log \frac{\phi(u_i)}{\hat{\pi}(u_i)}, \quad u_i \stackrel{iid}{\sim} \phi.$$
(10)

We want to minimize (overestimating the real variance)

$$\mathsf{KL}(\pi(x)||\hat{\phi}(x)) \approx \frac{1}{k} \sum_{i=1}^{k} \log \frac{\pi(x_i)}{\hat{\phi}(x_i)}.$$
(11)

Transport Elliptical Slice Sampler

- Generalizes the elliptical slice sampler by targeting the extended state space π(x)φ(v).
- Given a map T_{ψ} such that $\hat{\pi}(u) \approx \phi(u)$, leave $\hat{\pi}(u)\phi(v)$ invariant.

Figure: Ellipses corresponding to mean field approximations with underestimate (left) and overestimate (right) of the real variance.

- **Require:** $u, T_{\psi}(\cdot), \hat{\pi}(\cdot)$ 1: $V \sim \mathcal{N}(0, \mathbb{I}_d)$ 2: $w \sim \text{Uniform}(0, 1)$ 3: $\log s \leftarrow \log \hat{\pi}(u) + \log \phi(v) + \log w$ 4: $\theta \sim \text{Uniform}(0, 2\pi)$ 5: $[\theta_{min}, \theta_{max}] \leftarrow [\theta - 2\pi, \theta]$ 6: $\mu' \leftarrow \mu \cos \theta + \nu \sin \theta$ 7. $v' \leftarrow v \cos \theta - u \sin \theta$ 8: if $\log \hat{\pi}(u') + \log \phi(v') > \log s$ then $x' \leftarrow T_{\psi}(u')$ 9: Return x', u'10. 11: else if $\theta < 0$ then 12. $\theta_{min} \leftarrow \theta$ 13: 14: else $\theta_{max} \leftarrow \theta$ 15 end if 16: $\theta \sim \text{Uniform}(\theta_{\min}, \theta_{\max})$ 17. 18. Go to 6.
- 19: end if

Adaptive Transport Elliptical Slice Sampler

Require:
$$u_{1:k}^{(0)}$$
, h, m, N , TESS
1: Set initial parameters of T_{ψ} and $\hat{\pi}$.
2: for $t \leftarrow 1, \dots, h$ do \triangleright Warm-up
3: for $i \leftarrow 1, \dots, k$ do
4: $x_i^{(t)}, u_i^{(t)} \leftarrow \text{TESS}(u_i^{(t-1)}, T_{\psi}, \hat{\pi})$
5: end for
6: Update ψ in T_{ψ} by running m
iterations of gradient descent on (12)
using samples $x_{1:k}^{(t)}$.
7: end for
8: $u_{1:k}^{(0)} \leftarrow u_{1:k}^{(h)}$
9: for $t \leftarrow 1, \dots, N$ do \triangleright Sampling
10: for $i \leftarrow 1, \dots, k$ do
11: $x_i^{(t)}, u_i^{(t)} \leftarrow \text{TESS}(u_i^{(t-1)}, T_{\psi}, \hat{\pi})$
12: end for
13: end for
14: Return $x_{1:k}^{(1)}, \dots, x_{1:k}^{(N)}$

$$\mathsf{KL}(\pi(x)||\hat{\phi}(x)) \approx \frac{1}{k} \sum_{i=1}^{k} \log \frac{\pi(x_i)}{\hat{\phi}(x_i)} \quad (12)$$

Parameters must be learnt using samples from the target π(x)

$$\psi^* = \mathop{\arg\min}_{\psi \in \Psi} \mathsf{KL}(\pi || \hat{\phi}).$$
 (13)

- Alternates between optimizing \u03c6 and sampling x, using k parallel chains, sequentially for h epochs.
- Minimizing KL(π||φ̂) forces φ̂(x) to cover the mass of π(x).
- Overconfident approximation to the target variance, corrected using TESS.

Biochemical oxygen demand model

- $B(t) = \theta_0(1 \exp(-\theta_1 t))$ for times t < 5.
- Set the parameters $\theta_0 = 1$ and $\theta_1 = 0.1$ and simulate $y(t_i)$ observations at times t_i evenly spaced in [0, 5).

$$\mathbf{y}(t_i) = \theta_0(1 - \exp(-\theta_1 t_i)) + \epsilon_i, \qquad i = 1, \dots, 20, \tag{14}$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma_y^2)$ and fixed $\sigma_y^2 = 2 \times 10^{-4}$. Target posterior density is given by the likelihood $L(\mathbf{y}|\theta_0, \theta_1) = \prod_i \mathcal{N}(\mathbf{y}(t_i); B(t_i; \theta_0, \theta_1), \sigma_y^2)$ and flat prior $\pi_0(\theta_0, \theta_1) \propto 1$.

Figure: Samples from the target density $\pi(\theta)$ of the Biochemical oxygen demand model acquired by the TESS algorithm, mapped to $\hat{\phi}(\theta)$ (4), with diffeomorphism T_{ψ} learned using Adaptive TESS. With an approximation that overestimates the real variance (right) of our target (left) we are able to capture its global, non-Gaussian structure and explore it using a dimension independent and gradient-free method.

References

- Iain Murray, Ryan Adams, and David MacKay. Elliptical slice sampling. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 541–548. JMLR Workshop and Conference Proceedings, 2010.
- Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979, 2020.
- Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516, 2014.
- Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.