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Objectives

Sample from an unnormalized posterior distribution

π(x) ∝ L(y |x)π0(x).

Use local pointwise information of the target distribution to generate a Markov
chain of dependent samples.

MCMC with transition kernel q(x ′|x) such that,

Qπ :=

∫
q(x ′|x)π(x)dx = π(x ′). (1)

Efficient: we estimate µ =
∫

f (x)π(x)dx with µ̂ = n−1 ∑n
i=1 f (x ′

i ), then by CLT

µ̂ ≈ N(µ, n−1σ) (2)

where σ = Var(f (x ′
i )) + 2

∑
k Cov(f (x ′

i ), f (x
′
i+k )) if stationary.
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Objectives

Sample from an unnormalized posterior distribution

π(x) ∝ L(y |x)π0(x).

Efficient MCMC algorithms usually rely on using gradient information from the
target distribution, i.e. discretized Hamiltonian or Langevin dynamics of a process
stationary on our target distribution.

Optimizing these algorithms to efficiently minimize both computations and
correlations between sequential samples requires algorithmic parameters to be
manually tuned.

Accelerate sampling on modern computer architectures, e.g. utilizing GPUs or
TPUs.

Many, short chains (run in parallel) instead of few, long chains.

Lockstep necessity when simulating parallel chains on modern vector oriented
libraries (PyTorch, TensorFlow, JAX).
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Elliptical Slice sampler

Gradient-free MCMC with no tuning
parameters [Murray et al., 2010].

Require: x , L(D|·)
1: v ∼ N (0, Id )
2: w ∼ Uniform(0, 1)
3: log s ← log L(D|x) + logw
4: θ ∼ Uniform(0, 2π)
5: [θmin, θmax ]← [θ − 2π, θ]
6: x ′ ← x cos θ + v sin θ
7: if log L(D|x ′) > log s then
8: Return x ′

9: else
10: if θ < 0 then
11: θmin ← θ
12: else
13: θmax ← θ
14: end if
15: θ ∼ Uniform(θmin, θmax )
16: Go to 6.
17: end if

Assume our target
π(x) ∝ L(y |x)N (x |0, C).

Figure: Elliptical Slice sampler
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Normalizing flows

Theorem
Let U ⊂ Rd be open and Tψ : U → Rd be continuous, bijective and differentiable at
every point in U , then for every measurable f : Rd → [0,∞] and letting X = Tψ(U)∫

X
f (x)dx =

∫
U

f (Tψ(u))| det∇Tψ(u)|du, (3)

where ∇T is the Jacobian matrix of T .

Choose a normalized and simple to sample from reference density ϕ(u).

π(x) = ϕ(T−1
ψ (x))| det∇T−1

ψ (x)| =: ϕ̂(x) (4)

ϕ(u) = π(Tψ(u))| det∇Tψ(u)| =: π̂(u), (5)

In practice we’ll parametrize and optimize a Tψ such that ϕ̂(x) ≈ π(x) and
π̂(u) ≈ ϕ(u).
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Normalizing flows

Figure: Sampling from the Banana density π(x1, x2) ∝ exp

(
−[x2

1/8 +
(

x2 − x2
1/4

)2
]/2

)
using the transport

map T (u1, u2) = (
√

8u1, u2 + 2u2
1 ) starts by transforming the target space to the reference space via a

change of variables, drawing samples from an ellipsis on the extended reference space (not pictured) and
pushing samples back to the target space.
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Normalizing flows (parametrization)

Wide class of linear and nonlinear functions which can be used [Kobyzev et al.,
2020].

Coupling architecture introduced by Dinh et al. [2014] with affine bijection.

Consider the disjoint partition x = (xA, xB) ∈ Rp × Rd−p . Then, one can define a
transformation G : Rd → Rd by the formula

xA = eψ1 ⊙ uA + ψ2 (6)

xB = uB , (7)

given parameters Ψ : Rd−p → Rp × Rp learned only from the extended input, with
Ψ a dense feedforward neural network.

Easily inverted through a shift and scale with parameters Ψ(xB) = Ψ(uB).

The modulus determinant of its Jacobian matrix can be easily computed as
| det∇G(x)| =

∏d
i=1(e

ψ1 )i and | det∇G−1(x)| =
∏d

i=1(e
−ψ1 )i .

Arbitrary complexity by introducing a transformation D : Rd → Rd with the same
structure as G but with the roles of the partitions reversed.

Tψ = Dn ◦ Gn ◦ · · · ◦ D1 ◦ G1, n ≥ 1 (8)

Alberto Cabezas González Transport Elliptical Slice Sampling October 29, 2022 7 / 12



References

Normalizing flows (optimization)

Minimize a divergence between our target density π(x) and the push-forward
reference density ϕ̂(x).

Kullback-Leibler divergence [KL; Kullback and Leibler, 1951] is arguably the most
widely used and studied divergence.

KL(π||ϕ̂) =
∫

log
π(x)

ϕ̂(x)
π(x)dx . (9)

By LOTUS KL(π||ϕ̂) = KL(π̂||ϕ).
KL divergence is asymmetric, i.e. KL(π||ϕ̂) ̸= KL(ϕ̂||π).
Approximate inference minimizes (underestimating the real variance)

KL(ϕ(u)||π̂(u)) ≈
1
M

M∑
i=1

log
ϕ(ui )

π̂(ui )
, ui

iid∼ ϕ. (10)

We want to minimize (overestimating the real variance)

KL(π(x)||ϕ̂(x)) ≈
1
k

k∑
i=1

log
π(xi )

ϕ̂(xi )
. (11)
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Transport Elliptical Slice Sampler

Generalizes the elliptical slice sampler
by targeting the extended state space
π(x)ϕ(v).

Given a map Tψ such that
π̂(u) ≈ ϕ(u), leave π̂(u)ϕ(v)
invariant.

Figure: Ellipses corresponding to mean field approxima-
tions with underestimate (left) and overestimate
(right) of the real variance.

Require: u,Tψ(·), π̂(·)
1: v ∼ N (0, Id )
2: w ∼ Uniform(0, 1)
3: log s ← log π̂(u) + log ϕ(v) + logw
4: θ ∼ Uniform(0, 2π)
5: [θmin, θmax ]← [θ − 2π, θ]
6: u′ ← u cos θ + v sin θ
7: v ′ ← v cos θ − u sin θ
8: if log π̂(u′) + log ϕ(v ′) > log s then
9: x ′ ← Tψ(u′)

10: Return x ′, u′

11: else
12: if θ < 0 then
13: θmin ← θ
14: else
15: θmax ← θ
16: end if
17: θ ∼ Uniform(θmin, θmax )
18: Go to 6.
19: end if
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Adaptive Transport Elliptical Slice Sampler

Require: u(0)
1:k , h,m,N, TESS

1: Set initial parameters of Tψ and π̂.
2: for t ← 1, . . . , h do ▷ Warm-up
3: for i ← 1, . . . , k do
4: x (t)

i , u(t)
i ← TESS(u(t−1)

i ,Tψ , π̂)
5: end for
6: Update ψ in Tψ by running m

iterations of gradient descent on (12)
using samples x (t)

1:k .
7: end for
8: u(0)

1:k ← u(h)
1:k

9: for t ← 1, . . . ,N do ▷ Sampling
10: for i ← 1, . . . , k do
11: x (t)

i , u(t)
i ← TESS(u(t−1)

i ,Tψ , π̂)
12: end for
13: end for
14: Return x (1)

1:k , . . . , x
(N)
1:k

KL(π(x)||ϕ̂(x)) ≈
1
k

k∑
i=1

log
π(xi )

ϕ̂(xi )
(12)

Parameters must be learnt using
samples from the target π(x)

ψ∗ = argmin
ψ∈Ψ

KL(π||ϕ̂). (13)

Alternates between optimizing ψ and
sampling x , using k parallel chains,
sequentially for h epochs.

Minimizing KL(π||ϕ̂) forces ϕ̂(x) to
cover the mass of π(x).

Overconfident approximation to the
target variance, corrected using TESS.
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Biochemical oxygen demand model

B(t) = θ0(1− exp(−θ1t)) for times t < 5.
Set the parameters θ0 = 1 and θ1 = 0.1 and simulate y(ti ) observations at times
ti evenly spaced in [0, 5).

y(ti ) = θ0(1− exp(−θ1ti )) + ϵi , i = 1, . . . , 20, (14)

where ϵi ∼ N (0, σ2
y ) and fixed σ2

y = 2× 10−4.
Target posterior density is given by the likelihood
L(y|θ0, θ1) =

∏
i N (y(ti );B(ti ; θ0, θ1), σ

2
y ) and flat prior π0(θ0, θ1) ∝ 1.

Figure: Samples from the target density π(θ) of the Biochemical oxygen demand model acquired by the TESS
algorithm, mapped to ϕ̂(θ) (4), with diffeomorphism Tψ learned using Adaptive TESS. With an approximation
that overestimates the real variance (right) of our target (left) we are able to capture its global, non-Gaussian
structure and explore it using a dimension independent and gradient-free method.
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