

The impact of training data shortfalls on diabetes comorbidity predictor Dr. Philippa Ryan, Mr. Berk Ozturk, Dr. Tom Lawton, Prof. Ibrahim Habli

Introduction

- Development of diabetes comorbidity predictor
 - Provides "independent second opinion" on patient
 - Example for hypertension
- Training issues and safety analysis of DCP
- Results and next steps
- Funded by
 - EPSRC Assuring Responsibility-Trustworthy Autonomous Systems
 - LRF Assuring Autonomy International Programme

Ryan P, Ozturk, B., Lawton, T., Habli, I.: The Impact of Training Data Shortfalls on Safety of AI-based Clinical Decision Support Systems. In: SAFECOMP 2023 (to appear Sept.)

Training Data for ML

- All Machine Learning needs good quality training data
 - Data embodies the functionality you want it to learn
 - User generated data
 - Issues with validity (values, representative of reality)
 - Better for coverage (generate cases)
 - Real world datasets
 - Fewer issues with validity for individual data points
 - Harder to argue future coverage and distribution
- Any problems with training data reflected in final ML

DCP use case

Hypertension version

The training data Connecting Bradford - database

- 43,000+ data training rows used of Type II Diabetes patients
- Reduced feature space (14,000+) to 20 FOI
 - Reviewed by clinician for validation

What can we do?

Can pre-process real-world data

- Missing values common problem with medical diagnosis ML
- Can compensate => data imputation
 - Lots of methods e.g., average, median
 - Bag imputation
 - Uses ML to predict likely values for missing cases
- But can introduce bias
- A lots of research maximises metrics without understanding risk

Hazards

Hypertension version

- DCP output could influence decision
- False positive
 - Patient categorised high risk when they are not
 - Provided with medication they don't need with side-effects (severe)
- False negative
 - Patient categorised low risk when they are not
 - Risk of heart attack/stroke (catastrophic)
- Likelihood of incorrect diagnosis from DCP hard to predict
 - Varies per patient

Safety analysis Hazop like

• "Flow" – training data into the training process

• Guideword examples:

- More indicates a bias in the data, e.g., over representation of particular patient group in the dataset
- No or Not FOI or set of FOIs are missing
- Less fewer examples of FOI than are desirable for good performance are present
- Early/Before indicates that a FOI may be present but out of date with respect to the co-morbidity presenting itself
- Reverse opposite diagnosis included

Guideword	Deviation	Cause	Effect	Mitigation
No or not	Samples for eth-	No/limited pa-	ML not trained or	Manual review of
	nic group not in-	tients of ethnic	verified adequately	DB by expert, show
	cluded in train-	group were pa-	for ethnic group	clinician prototypi-
	ing data (TD)	tients	with higher genetic	cal examples, pa-
			risk of hypertension	tient discussion
Part of	Partially missing	BMI not consis-	ML performance	Use bag imputation
	BMI in TD sam-	tently recorded	biased based on the	for TD records to
	ples		data imputation	reduce bias, recom-
			method used, leads	mend collection of
			to poor performance	BMI for future TD,
			for high or low BMI	show clinician proto-
			patients	type examples, pa-
				tient discussion
More	Over represen-	Most patients	Prediction biased to-	Manual review of
	tation in TD	examined had	wards patients with	DB by expert, train-
	of high BMI	high BMI	high BMI, meaning	ing samples picked
	patients		patients with low	across all ranges,
			BMI have less accu-	show clinician pro-
			rate predictions	totype examples,
				patient discussion
More	-	-	TD dominated by	
	1	-	ethnic group with	
	tain ethnic group	for patients of	genetic disposition	clinician prototype
		other ethnic	to hyper tension	examples, patient
		groups		discussion
Early/	1		ML underestimates	
Before			likelihood of hyper-	-
and More	training patients	· ·		hypertension diag-
		part of patient		nosis, manual review
	BMI by time of	history		of DB by expert,
	diagnosis			patient discussion
Instead	BMI value no	Performance		Show clinician FOI
		outlier from ML	for hypertension	from training and
	FOI for some			for each prediction
	FOI distribution			at point of use, pa-
				tient discussion

Discussion

- Prototypical examples
 - Issue of patient confidentiality
 - Would need to obfuscate these further
- Limited to 20 FOI during training may miss data patterns
 - Some FOI result of hypertension not cause
- Missing data can be significant
 - Patient too unwell for tests
 - Long term trend in their health
 - Or could just be poor record keeping!
 - How do we incorporate in ML process?
- Scalability
 - How to perform manual review of such a large set of data?

Summary

- Issues with training data lead to latent ML faults
 - Subtle and varied
- Too many papers in this area maximise metrics without understanding risk
- System level hazard analysis
 - Can help identify actual risk with more clarity
 - We can put *targeted* mitigations in place
- May be complex trade-offs

Funded by

Training DCP

Data selection

- 42,000+ data training rows used of Type II Diabetes patients
- Reduced feature space (14,000+) to 20 FOI
 - Reviewed by clinician for validation
- Removed duplicate records
- Normalised values
- Compensated missing values using bag imputation
- Trained multiple ML models
 - Naïve Bayes, NN, random forest, SVM
- Ensemble gave best results
 - Accuracy and Kappa values
- NICE guidelines used

Ozturk, B., Lawton, T., Smith, S., Habli, I.: Predicting Progression of Type 2 Diabetes using Primary Care Data with the Help of Machine Learning. In: Medical Informatics Europe 2023 (2023)

Feature Importance Levels

