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What’s the problem? 〈 2 | 22 〉

We’d like to be able to predictively model the (opto)electronic behaviour of
materials. Because this could be useful.

I Specifically, ∆Ex., ∆QP, and EX
B in

semiconductors.1

I Don’t define “material heaven”, but are
a start.

I (The blue LED is blue for a reason.)
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1FYI work discussed here is in: Hunt et al., Phys. Rev. B 98(7) (2018).



Energy gaps: definitions 〈 3 | 22 〉

The quasiparticle gap, ∆QP, is defined as the di�erence between the CBM and
the VBM:

∆QP(kf ,kt) = ECBM(kt)− EVBM(kf)

= [EN+1(kt)− EN(kt)]− [EN(kf)− EN−1(kf)]

= EN+1(kt) + EN−1(kf)− EN(kt)− EN(kf), (1)

The excitonic gap, ∆Ex., is defined as the energy di�erence between an excited
N-electron state and the ground N-electron state:

∆Ex.(kf ,kt) = E+
N (kf ,kt)− EN, (2)

Their di�erence is the exciton binding.2

2 The interaction energy of a quasielectron at kt and a quasihole at kf .
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Figure 1: Introductory slide from Laughlin’s Nobel lecture.



Why �antum Monte Carlo (QMC)? 〈 5 | 22 〉

What else?

I Density functional theory (or HF | hybrids)
I Take di�erences in Kohn-Sham (Hartree-Fock) SP eigenvalues.

I Many-body perturbation theory (GW | GW -BSE | MPn)
I QP energies from QP equation (feat. self-energy, Σ(k, ω)).

I �antum chemistry (post HF | CC | CI | FCI)
I Most similar to present: direct calculation of total energies.

Either too crude, too sca�ered, or too expensive.



Why QMC - cont. 〈 6 | 22 〉

QMC methods:

X Are highly accurate, and systematically improvable.

X Are non-perturbative, and treat correlation e�ects exactly.

X Have O(Ne
3) cost, not much worse in “abnormal” cases.

Proof? Lots available, see reviews,3 or below.4

Figure 2: The basis of much modern
(computational) electronic structure
theory.
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TABLE I. The ground-state energy of the charged Fermi and Bose
systems. The density parameter r~ is the Wigner-sphere radius in units
of Bohr radii. The energies are rydbergs and the digits in parentheses
represent the error bar in the last decimal place. The four phases are
paramagnetic or unpolarized Fermi Quid (PMF); the ferromagnetic or
polarized Fermi fluid (FMF); the Bose fluid {BF);and the Bose crystal
with a bcc lattice.
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the high accuracy of the results derived from
employing a good trial wave function and the con-
sequent small statistical error, the number de-
pendence, which was empirically established for
systems ranging from 38 to 246 particles, is an
order of magnitude larger than the statistical
error. Extrapolation to infinite-particle results
was carried out at each density on the basis of
E(N) =E, +E,/N+E, A~, where the coefficients E„

E„and E, were empirically determined from the
simulations. The E, term arises from the poten- .

tial energy and is due to the correlation between
a particle and its images in the periodically ex-
tended space that is used in the Ewald summa-
tion procedure4 to eliminate the major surface
effects. The E, term comes from the discrete
nature of the Fermi sea for finite systems, and

6„is the size dependence of an ideal Fermi sys-
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FIG. 2. The energy of the four phases studied relative to that of the lowest boson state times r$ in rydbergs vs
r$ in Bohr radii. Below r$ = 160 the Bose fluid is the most stable phase, while above, the Wigner crystal is most
stable. The energies of the polarized and unpolarized Fermi Quid are seen to intersect at r$ = 75. The polarized
(ferromagnetic) Fermi fluid is stable between ~$ = 75 and ~$ = 100, the Fermi Wigner crystal above r$ = 100, and

the normal paramagnetic Fermi fluid below r$ = 75.

S68

3 W. M. C. Foulkes et al., Rev. Mod. Phys. 73 (2001), R. J. Needs et al., J. Phys. Condens. Ma�er 22 (2009).
4 D. M. Ceperley and B. J. Alder, Phys. Rev. Le�. 45 (1980).



QMC Methods5 〈 7 | 22 〉

Variational Monte Carlo
I Endow a trial wavefunction with variational freedom:

Ψ(R) = exp
[
J{α}(R)

]︸ ︷︷ ︸
Our additions

× D(R)︸ ︷︷ ︸
DFT, HF, ...

, (3)

and pick {α}.

I MC integration used, for example, to evaluate

〈Ψ|Ĥ|Ψ〉 =

∫
dR |Ψ(R)|2

[
ĤΨ(R)

Ψ(R)

]
≈
∑
i

H(Ri)Ψ(Ri)

Ψ(Ri)
, (4)

({Ri} distributed as |Ψ(R)|2).

5 W. M. C. Foulkes et al., Rev. Mod. Phys. 73 (2001).



QMC Methods II 〈 8 | 22 〉

Di�usion Monte Carlo
I DMC is a stochastic projector-based method for solving

Ĥ Ψ(R, τ) = (ET − ∂τ )Ψ(R, τ), (5)

or, if you like

Ψ(R, τ + ∆τ) =

∫
G(R← R′,∆τ)Ψ(R′, τ)dR′. (6)

I Separable (∂τ Ĥ = 0) 6

Ψ(0) =
∑
n

cnΦn =⇒ Ψ(τ) =
∑
n

cnΦn exp [−(En − ET )τ ] (7)

6 {Φi} → complete basis of eigenstates of the interacting problem.



DMC - cont. 〈 9 | 22 〉

E�ectively we take:
lim
τ→∞

Ψ(τ) ∼ Φ0, (8)

by having the DMC Green’s function take configurations R′ → R, with caveats:
I Time steps: know G(R← R′,∆τ) in limit of small ∆τ .

I Population control: number of walkers in DMC fluctuates. Control
mechanism introduces a bias.

I Finite-size (FS) e�ects: extrapolation to TD limit a necessity.

I Fixed-node approximation: (non-local) antisymmetry enforced by (local)
boundary condition (Ψ = 0 surface is fixed).

Gaps: expect some of these to ma�er less!



Excited States 〈 10 | 22 〉

Briefly:
I QP gap→ EN,N±1 (VP on each ground state).

I Ex. gap→ may have VP on E+. May only have at VMC level. FN-DMC VP
obtained in special circumstances.7

I (FN constraint means e�ective VP)

7 W. M. C. Foulkes et al., Phys. Rev. B 60 (1999).



Bulk solids 〈 11 | 22 〉

We’ve studied Si, α-SiO2, and cubic BN in the current work. Previous QMC
studies had claimed success in evaluation of “QMC band structures”,8 minus
discussions of:

I Finite-size errors.

I Fixed-nodal errors.

I ∆QP vs. ∆Ex..

Will concentrate on Si here,
exploring the above.

8 P. R. C. Kent et al., Phys. Rev. B 57 (1998), A. J. Williamson et al., Phys. Rev. B 57 (1998).



Bulk solids: FS errors 〈 12 | 22 〉

I Able only to simluate a finite chunk of material (supercell), under PBCs.
Excitations “1/N” e�ects. Need statistical accuracy + careful FS treatment.
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Figure 3: Uncorrected SJ-DMC gaps of Si. FS
e�ect characteristic and quantifiable, largely
from image-interactions.

I Then why do ∆QP & ∆Ex. behave same?



Bulk solids: Fixed-nodal error 〈 13 | 22 〉

I Probe with Backflow transformation:

ri → xi = ri + ξi(R) (9)

which can change nodal surface.9

I Tested ∆QP/Ex(Γv → Γc) and ∆QP(Γv
∼→ CBM), in 2× 2× 2 supercell.

I We find that backflow leads to a reduction in gaps, of at least 0.2 eV, but
upto 0.3–0.4 eV when one re-optimises ξi .

10

9 P. Lopez Rios et al., Phys. Rev. E 74 (2006).
10 C.f. controllable uncertainty: O(0.1 eV) for each of pseudopotentials, statistics, NLO FS e�ects (?).



Phosphorene 〈 14 | 22 〉

A direct gap 2D semiconductor, with large exciton binding energy.11

Figure 4: PL measurements of Phosphorene n-layers.

I Do not expect ∆QP ∼ ∆Ex.

I FS e�ects in ∆QP/Ex. much more important.

11 J. Yang et al., Light Sci. Appl. 4 (2015).



Physics of FS e�ects in 2D 〈 15 | 22 〉

e

h

e

h
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I We want to model a free excitonic
complex

I Perform supercell calculation (SC
characteristic size L), subject to
periodic BCs

I Hence incurr an unphysical
image-interaction

I Need to remove Eint. How does it scale?



Physics of FS e�ects in 2D (cont.) 〈 16 | 22 〉

Figure 5: Unscreened (le�) and screened (right) field lines from point charges at ρ = z = 0.

I With 2D screening (Keldysh interaction), charge-quadrupole interaction12

leads to expected scaling which is O(L−2).

12 Note no dipole in inversion symmetric system!



Physics of FS e�ects in 2D (cont.) 〈 17 | 22 〉

∆QP

I Similar image e�ects, easier to manage.

I Subtract single-particle vM (O(L−1)).

I From regularized la�ice sum over screened interaction (∼ Ewald sum).

∑
R

W (r− R)→

Ewald︷ ︸︸ ︷∑
R

V (r− R) +
∑

R

δV (r− R)︸ ︷︷ ︸
safe

. (10)

I “Safety”: lim
r→∞

δV (r) = 0.



Physics of FS e�ects in 2D (cont.) 〈 18 | 22 〉

I FSE appear to scale as argued.

I Big gaps (ε!),13 but good agreement w/ Gaufrès et al.14

I Phonon renormalisation ∼ 0.17 eV @ 300K.15

Figure 6: QMC energy gaps in
phosphorene vs. system size.
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13 Also, this is not due to FN error! Backflow hasO(0.05 eV) e�ect here.
14 This result is unpublished, so far, but was presented at GW 2018 by A. Loiseau. ∆Ex = 1.95 eV.
15 Via Tomeu Monserrat, also as yet unpublished.



Physics of FS e�ects (cont.) 〈 19 | 22 〉

Another approach is to consider passivated (finite) clusters. Here FS e�ect is
kinetic in origin (confinement).16

I FS converge faster (QP gap O(L−2) by default), but. . .

I State under study may not be relevant17. . .
3

The surface nature of the LUMO is also responsible
for some of the previous controversies in evaluating the
energy of this state. The inset to Fig. 1b shows an exam-
ple of the convergence of the electronic eigenvalues in a
DFT-PBE calculation of C10H16 using a Gaussian basis.
It shows the energy of the HOMO and LUMO calculated
with the G03 code [20] using 6-31G*, 6-311G**, aug-
ccp-vtz,[22] and aug-ccp-vqz [22] basis sets. The energy
of the LUMO decreases by almost 2 eV as more diffuse
basis functions are added, while the HOMO energy stays
approximately constant. If a localized basis set with in-
sufficient flexibility to describe the diffuse character is
used, the LUMO will be artificially localized close to the
nanoparticle, increasing its kinetic energy and pushing up
its energy. However, when the large aug-ccp-vtz [22] and
aug-ccp-vqz [22] basis sets are used, the Gaussian DFT-
PBE HOMO-LUMO gaps agree with the plane-wave re-
sults to within 0.01 eV.

The QMC calculations were performed with the
casino [23] code using Slater-Jastrow [24] trial wave
functions of the form ΨT = D↑D↓ exp[J ], where D↑

and D↓ are Slater determinants of up- and down-spin
orbitals taken from DFT calculations and exp[J ] is a Jas-
trow correlation factor, which includes electron-electron
and electron-ion terms expanded in Chebyshev polyno-
mials. For computational efficiency within the QMC cal-
culations, the DFT orbitals were represented using cubic
splines. For the largest nanoparticle, C66H64, we used the
approach described in Ref. [25] to transform the DFT or-
bitals into a truncated, localized basis, producing a QMC
algorithm in which the CPU time required to carry out
each electron move is approximately independent of the
system size. The Jastrow factor was optimized using a
standard variance-minimization scheme.[24] While vari-
ational Monte Carlo calculations were used during the
optimization process, all the QMC optical gaps were cal-
culated using diffusion Monte Carlo (DMC).[24] To con-
verge the DMC total energies with respect to time step
and population size, a time step of 0.02 a.u. was used and
the target population was at least 640 configurations in
each calculation. The ionic cores were represented by the
same TM PBE pseudopotentials used in the DFT calcu-
lations. In comparison with a Hamann pseudopotential,
the TM PBE pseudopotentials were found to reduce the
minimum obtainable variance of the energy by a factor of
1.5, and an extra 5% of the correlation energy was recov-
ered in variance minimization. The effect on the QMC
energies of using LDA or PBE functionals to generate the
DFT orbitals was also tested. When the PBE functional
and pseudopotentials were replaced with the LDA func-
tional and pseudopotentials, the DFT and DMC gaps
of C29H36 were reduced by 0.1 eV and 0.3(1) eV respec-
tively. The DFT and DMC optical gaps are therefore
relatively insensitive to the choice of functional.

The optical gaps of the carbon nanoparticles were cal-
culated as the difference in the DMC energy of the ground

(a) HOMO (b) LUMO

FIG. 2: (Color) Isosurface plots of the square of the (a)
HOMO and (b) LUMO of C29H36. The green isosurfaces in-
clude 50% of the charge in each orbital.

state and an excited state. The absorption of a photon
creates an excited singlet state. The description of such a
state requires two pairs of Slater determinants. However,
for computational simplicity, we represented the excited
state by replacing the HOMO in the spin-down Slater de-
terminant with the LUMO. Within Ziegler’s sum model
for restricted Hartree-Fock states [26], the error incurred
by adopting this mixed-state approach is equal to half the
singlet-triplet splitting. This error is typically 0.1–0.2 eV
in group-IV nanostructures of this size [27], which is small
compared with the optical gaps. Previous QMC calcula-
tions of the optical gaps of silicon nanoparticles [14] using
this approach were shown to be in excellent agreement
with GW -Bethe-Salpeter-equation (GW -BSE) calcula-
tions of the true singlet excitation energies.

To investigate the sensitivity of the QMC excita-
tion energies to the choice of single-particle states,
the excited-state calculations were repeated with three
choices for the LUMO: (i) the unoccupied LUMO from
a ground-state DFT calculation; (ii) the HOMO* occu-
pied by the excited electron in a DFT calculation of an
excited triplet; (iii) the HOMO* occupied by the excited
electron in a DFT calculation of an excited mixed state.
The DMC excited-state energies evaluated using (i) and
(ii) were 0.3(1) eV lower than the energy evaluated us-
ing (iii), and therefore we conclude that the excitation
energy is relatively insensitive to the choice of DFT or-
bital used to represent the excited electron in the Slater
determinant.

The DMC optical gaps of the carbon nanoparticles are
given in Table I, and are plotted against nanoparticle
size in Fig. 1. DMC calculations do not suffer from the
well-known DFT “band-gap problem,” as they fully de-
scribe the interaction of the valence electrons with the
electron excited into the LUMO by the absorption of
a photon, so that electron-hole correlation is accounted
for. The DMC optical gaps are significantly larger than
the DFT HOMO-LUMO gaps, as was found for silicon
nanoparticles.[14] For example, the DMC optical gap of
C10H16 is 7.61(2) eV, while the DFT-PBE gap is 5.77 eV.

Figure 7: Band charge densities in C29H36.

16 T. Frank et al., arXiv:1805.10823 (2018).
17 N. D. Drummond et al., Phys. Rev. Le�. 95 (2005).



Another QMC study of Phosphorene 〈 20 | 22 〉

Frank et al. have also studied phosphorene. We’re dissatisfied with their
approach. Why?
I Used cluster calculations to argue scaling in bulk calculations.

I Calculated the wrong gap:

Figure 8: Excerpt from preprint.

I Our excitonic gap (2.2(2) eV) agrees with their “quasiparticle” gap (2.4 eV) ,.
18

18 Guessed wrong scaling exponent (1/N) for QP gap, but this isn’t a QP gap! Just so happen to have calculated
and taken TD limit for an excitonic gap. Assuming they’ve done the calculations correctly, a good test of our result!



Conclusion 〈 21 | 22 〉

I QMC methods o�er a direct, real-space approach to the many-body problem.

I They allow for accurate determination of energy gaps from first-principles in
one, two and three-dimensional systems.

I They can be systematically extended, and treat various important pieces of
physics exactly.
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