
www.n8cir.org.uk

Success in the Cloud

Using HTCondor on AWS

Dr Christopher Paul

Research IT, University of Manchester

www.n8cir.org.uk

Amazon Web Services

www.n8cir.org.uk

HTCondor @ University of Manchester

• Established as a service to

researchers in Nov. 2009.

• Consists of

– 24/7 rack servers (“backbone

nodes”) - 1200 cores

– Student cluster PCs (1300 PCs)

overnight, weekends, vacation.

• Available to staff, PhD

students and undergraduate

project students.

• Currently 190 registered users

• Demand is very “lumpy”

• Jobs run for 5-10 minutes to

several months

• Open-source – C++ code,

Geant4, Julia, Python, R.

• Commercial software –

Matlab, Mathematica.

www.n8cir.org.uk

Integrating AWS with UoM HTCondor service

• Seamless Integration

– Use existing UoM HTCondor

infrastructure – separate

matchmaker (“admin”) and job

submitter (“user”) nodes.

– Minimal changes to jobs for

“bursting into the cloud”.

– Maximize use of available local

HTCondor nodes before

“bursting into the cloud”.

– Replicate available software

applications (dependent on

licensing conditions).

– Provision of accounting

information for UoM usage and

AWS usage.

www.n8cir.org.uk

HTCondor on AWS

• 7 HTCondor AMI images on

AWS Marketplace

• HTCondor 8.6.10 on Amazon

Linux 2016.09 (v3)

• Instructions at

https://research.cs.wisc.edu/ht

condor/manual/v8.9.0/HTCond

orAnnexUsersGuide.html

• Challenges

– Personal HTCondor pool

– Single matchmaker/submitter

node

– Matchmaker/submitter node in

AWS

– AMI uses static HTCondor slots

www.n8cir.org.uk

Adapting the HTCondor AMI image for UoM

• Solutions

– Setup a personal Condor pool

for user “condor”

– Configure matchmaker node to

act as a Condor Connection

Broker

– Change the HTCondor slot type

to use dynamic slots

– Copy pool password file and use

SEC_PASSWORD_FILE in

.condor/user_config file

– Add CCB_ADDRESS line to

HTCondor clients

condor_config.local
– NUM_SLOTS = 1

 SLOT_TYPE_1_PARTITIONABLE = True

www.n8cir.org.uk

Additional challenges when providing an HTCondor

service

• Prevent “large” VMs being

“hijacked” by small jobs

• Use local HTCondor clients in

preference over AWS.

• Minimize cost by using SpotFleet

VMs in cheapest AWS region

• Prevent HTCondor jobs requesting

applications not present in AMI

• Tag each HTCondor job cluster

and corresponding VMs with

unique AnnexName ID

• Only consider queued jobs for

AWS if (ClassAD) QueuedTime

exceeds 20 minutes

• Calculate 28 days SpotFleet

price range and use diversified

SpotFleet allocation strategy

• Check job HTCondor ClassADs

against ClassADs in AMI

www.n8cir.org.uk

Additional challenges when providing an HTCondor

service

• Prevent “failing” jobs from restarting

indefinitely

• Need to account for CPU usage on

local nodes, “always on” Reserved

Instance nodes and “on demand"

SpotFleet VMs

• Use condor_hold command if (job

ClassAD) NumJobStarts exceeds

limit.

• Set CumulativeSlotTime ClassAD

to 0 when tagging job.

• Also use ClassADs CommittedTime,

CommittedSuspensionTime,

RemoteWallClockTime and

CumulativeSuspensionTime

OWNER UOM_CPU_USAGE AWS_RI_CPU_USAGE AWS_CPU_USAGE TOTAL_CPU_USAGE

xxxxxxxx 0000+00:00:00 0000+21:16:36 0000+00:00:00 0000+21:16:36

yyyyyyyy 0174+18:55:12 0000+00:00:00 0000+00:00:00 0174+18:55:12

www.n8cir.org.uk

Additional challenges when providing an HTCondor

service

• Rate limit on ec2-describe-

instances/describe-spot-fleet-

requests calls in 49ec2-

instance.sh

• # If you launch as few as 100

instances at a time, it's

possible to exceed AWS' rate

limit on describe-spot-fleet-

requests.

• Put each AWS call in a “repeat

until successful” loop

• Reduce risk of hitting rate limit

by adding --query filter to

AWS calls

• These enchancements will be

included in future versions of

HTCondor AMI

• Spin-up VMs in batches (50

VMs with 30 seconds gap)

www.n8cir.org.uk

Conclusions / Future Developments

• Seamless integration with

existing HTCondor service

• Need to use diversified

SpotFleet allocation strategy

(rather than cheapest) to

maximize number of VMs.

• Reserved Instance VMs

overcome issue of limited

SpotFleet capacity

• Ideal for handling “lumpy”

demand

• Can quickly “deploy” new

application - just update AMI

• Ability to target AWS region

based on SpotFleet capacity

• Drs Nick Chilton/Daniel Reta -

47,000+ jobs ~ 5-7 CPU hours

(28-38 CPU years) in 2

WEEKS for around $1,500.

www.n8cir.org.uk

Success in the Cloud – using HTCondor on AWS

Acknowledgements:
 Dr Daniel Corbett (UoM)
 Phil Edwards (AWS)
 Charlotte Spiteri (AWS)

